Invariant manifolds in dissipative dynamical systems ∗
نویسنده
چکیده
Invariant manifolds like tori, spheres and cylinders play an important part in dynamical systems. In engineering, tori correspond with the important phenomenon of multi-frequency oscillations. Normal hyperbolicity guarantees the robustness of these manifolds but in many applications weaker forms of hyperbolicity present more realistic cases and interesting phenomena. We will review the theory and present a number of examples using normalization-averaging techniques.
منابع مشابه
Entropy-Related Extremum Principles for Model Reduction of Dissipative Dynamical Systems
Chemical kinetic systems are modeled by dissipative ordinary differential equations involving multiple time scales. These lead to a phase flow generating anisotropic volume contraction. Kinetic model reduction methods generally exploit time scale separation into fast and slow modes, which leads to the occurrence of low-dimensional slow invariant manifolds. The aim of this paper is to review and...
متن کاملConstructive Methods of Invariant Manifolds for Kinetic Problems
We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in a most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the di erential equation for a manifold immersed in the phase space ...
متن کاملInvariant manifolds and global bifurcations.
Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to globa...
متن کاملSurvey on dissipative KAM theory including quasi-periodic bifurcation theory
Kolmogorov-Arnol’d-Moser Theory classically was mainly developed for conservative systems, establishing persistence results for quasi-periodic invariant tori in nearly integrable systems. In this survey we focus on dissipative systems, where similar results hold. In non-conservative settings often parameters are needed for the persistence of invariant tori. When considering families of such dyn...
متن کاملInvariant Manifolds for Stochastic Partial Differential Equations
Invariant manifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invariant manifolds for infinite dimensional random ...
متن کامل